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Abstract
We study by Monte Carlo simulation the short-time exponent θ in an
antiferromagnetic Ising system for which the magnetization is conserved but
the sublattice magnetization (which is the order parameter in this case) is not.
This system belongs to the dynamic class of model C. We use nearest-neighbour
Kawasaki dynamics so that the magnetization is conserved locally. We find that
in three dimensions θ is independent of the conserved magnetization. This is
in agreement with the available theoretical studies, but in disagreement with
previous simulation studies with a global conservation algorithm. However, we
agree with both these studies regarding the result θC �= θA. We also find that in
two dimensions, θC = θA.

PACS numbers: 05.50.+q, 05.10.Ln, 75.10.−b

In equilibrium statistical physics, universal scaling laws are observed close to a critical point
where the correlation length diverges. Dynamical systems also exhibit a universal scaling
behaviour in the long-time regime. Dynamic universality classes are characterized by the
dynamic exponent, which connects the divergences in space and time. Typically, in a magnetic
system, the finite-size scaling form of a physical observable O(t, τ, L) is given by,

O(t, τ, L) = b−xO(b−zt, b1/ντ, b−1L) (1)

where τ = (1 − T/Tc) is the deviation from the critical temperature Tc, b the scaling factor, ν

and x the static critical exponents, z the dynamic exponent and L the linear size of the system.
Some time ago, it was found that there is a universal behaviour in the short-time regime as

well [1]. If a magnetic system is quenched from a high temperature to its critical temperature
Tc, with initial order parameter equal to m0, then universal scaling behaviour is observed in a
macroscopic short-time regime:

M(t, τ, L, m0) = b−β/νM(b−zt, b1/ντ, b−1L, bx0m0) (2)
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where M is the order parameter, t is time, β is the critical exponent associated with the order
parameter and x0 is a new exponent associated with the short-time effect. x0 is the scaling
dimension of m0. At the critical point, for small values of m0,

M(t, m0) ∼ m0t
θ (3)

with θ = (x0 − β/ν)/z. θ is a new exponent, not related to any previously known static or
dynamic exponent [1]. The phenomenon is universal, as θ does not depend on microscopic
details, updating schemes etc. It is observed in a macroscopic short-time regime.

A positive value of θ will indicate that the magnetization (or order parameter in general)
will first increase with time and later show the conventional power-law decrease. It was
observed in many systems that such an increase does indeed occur. The exact cause of this
behaviour is not yet known very clearly.

Systems with different critical dynamics have been classified as models A, B, C etc [2].
Model A has no conservation, in model B the order parameter is conserved and in model C the
non-conserved order parameter is coupled to a non-ordering conserved field. These dynamic
classes are distinguished by the different values of the dynamic exponent z.

Using field theoretical methods, it was shown in [1] that short-time behaviour exists in
model A. Extensive numerical studies calculating θ in the different dynamical classes have
also been made in recent years and accurate estimates of θ in model A are available in different
dimensions [3]. The results confirm the qualitative behaviour predicted by the theoretical
analysis. Systems belonging to the class of model B do not show any short-time effect.
However, numerical studies with a globally conserved order parameter in two dimensions
indicate that there could be a short-time effect [4].

In model C, field theoretic techniques have shown that there is a universal short-time
behaviour [5]. Short-time effect in model C in a semi-infinite geometry has also been
studied [6]. There have been some recent numerical studies of the short-time scaling in
model C with global conservation [7]. These numerical studies show the novel result that the
short-time exponent depends on the value of the globally conserved magnetization—a feature
not previously obtained, at least in the theoretical study with local conservation. However, this
is not very surprising, as systems with global conservation in general show different behaviour
compared to the ones with local conservation [8–11] as far as the long-time behaviour is
concerned. In model C and model B for example, the behaviour with global conservation
becomes model-A-like.

However, before any conclusive statement about differences in short-time behaviour in
model C for local and non-local conservation can be made, it is necessary to obtain numerical
estimates of the exponents for the cases where the coupling field is locally conserved. This
is because the numerical estimates and field theoretic results could be quite different below
the upper critical dimension. In this paper, we report estimates of the short-time exponents in
both two and three dimensions with several values of the conserved density from simulation
studies with local conservation.

We have taken an antiferromagnetic Ising system where the magnetization m0 is kept
constant. This model has been studied numerically previously to estimate the dynamic
exponent z [12] and the short-time exponent θ with global conservation [7]. The order
parameter in this system is the staggered magnetization ms which is not conserved. Initially
the system is allowed to have short-range correlations only (since we quench it from a high
temperature to Tc) and the initial ms(t = 0) is kept at a low value. Hence the system
is prepared with two constraints: both m0 and ms are kept fixed. This could be done
by keeping a staggered field, but we simply keep it at the desired value by appropriately
flipping spins in a random configuration (the method is analogous to what is called a sharply
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Table 1. Numerical estimates of the critical temperature Tc for different values of the conserved
magnetization m0. The estimates for d = 3 with m0 �= 0 are in agreement with [7].

Dimension Size of lattice m0 kBTc

2 1001 × 1002 0 2.2692a

0.1 2.108 ± 0.002
0.2 1.557 ± 0.002

3 101 × 101 × 102 0 4.5116b

0.08 4.453 ± 0.004
0.12 4.376 ± 0.004
0.2 4.142 ± 0.004
0.4 3.009 ± 0.004

a Exact result.
b Approximate value; see e.g. [7].

prepared state in [3]). The antiferromagnetic interactions are between nearest neighbours.
The lattices are hypercubic. Periodic boundary conditions along one direction and helical
boundary conditions along the other directions are used. Helical boundary conditions with
antiferromagnetic nearest-neighbour interactions demand that the linear size along (d − 1)

directions should be odd where d is the spatial dimension.
We use the Kawasaki dynamics where the opposite spins on nearest-neighbouring sites are

exchanged, thus keeping m0 constant. The exchange between local neighbours ensures that the
conservation is local. The spins are updated sequentially and a sweep through the entire system
is equivalent to one unit of time (one Monte Carlo step). In both two and three dimensions,
we fix m0 at several different values. Since the system is quenched to the critical temperature
Tc(m0), we first estimate the value of Tc(m0) (table 1) for a large system following the method
used in [12]. We then estimate θ for each value of m0 in both two and three dimensions in
smaller lattices. For this estimate, one measures the initial slope of the ms(t) versus t curve
for different values of ms(0) and takes the limit ms(0) → 0.

The results are as follows. In two dimensions, the short-time exponent θ has been found
to be

θ = 0.18 ± 0.01 (4)

and this value has no measurable dependence on the initial (small) value of the sublattice
magnetization ms(0) (figure 1) or on the conserved magnetization m0 (figure 2). Also, in
contrast with the simulation studies with the global conservation algorithm [7], it is the same
for models A and C, up to the accuracy of the present study. In three dimensions, the exponent
θ has been found to be

θC = 0.13 ± 0.01 (5)

and this value also has no measurable dependence on the initial (small) value of the sublattice
magnetization ms(0) (figure 3). In agreement with the theoretical predictions [5] and in contrast
with the results of the simulation studies with the global conservation algorithm [7], this value
of θ has no numerically detectable dependence on the conserved magnetization m0 (figure 4)
at least for m0 � 0.12. However, in agreement with both the studies [5,7], the exponent has a
different value for model A:

θA = 0.10 ± 0.01. (6)

There is some indication that for very small values of m0 (� 0.08), θ might depend on m0

(figure 4) but a detailed study in this region requires very large-scale simulations.
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Figure 1. The early-time effect at critical temperature in two dimensions for a fixed value of the
conserved magnetization m0, and various values of the initial sublattice magnetization ms(0). The
lattice size was 349 × 350 and the results were averaged over 20 000–50 000 realizations of the
system.

Figure 2. The early-time effect at critical temperature in two dimensions for a fixed value of the
initial sublattice magnetization ms(0) and two values of the conserved magnetization m0. The line
marked A is for model A, i.e. m0 = 0. The lattice size was 349×350 and the results were averaged
over 20 000–50 000 realizations of the system.

A few comments are in order.

(i) Our estimate of θ in two dimensions for model A is in agreement with previous
estimates [3]. The estimates for model A are obtained by putting m0 = 0 in the present
model (as m0 = 0 corresponds to model A [13]).

(ii) That θA = θC in two dimensions indicates that the conservation is irrelevant here. This is
because the specific heat exponent α is negative here [2, 5], and the estimate of θC given
by [5] is strictly true for 2 < d < 4 when the spin dimension n = 1.

(iii) In three dimensions, our result θA �= θC and θC being independent of m0 are in qualitative
agreement with the theoretical estimates [5].

(iv) As regards the dependence of θC on m0 in three dimensions, the discrepancy between our
results and that of [7] is not surprising, because non-local conservation may be expected
to give new values of exponents and can even change the universality classes. In fact, the
numerical estimate of the dynamical exponent z in the globally conserved model C [7] is
found to correspond to that of model A, a result predicted by the analytical study of [10].
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Figure 3. The early-time effect at critical temperature in three dimensions for a fixed value of the
conserved magnetization m0, and various values of the initial sublattice magnetization ms(0). The
lattice size was 65 × 65 × 66 and the results were averaged over 5000 realizations of the system.

Figure 4. The early-time effect at critical temperature in three dimension for a fixed value of the
initial sublattice magnetization ms(0) and several values of the conserved magnetization m0. From
top to bottom, the lines correspond to m0 = 0.4, 0.2, 0.12, 0.08, 0 (model A); the results were
averaged over 5000, 5000, 50 000, 50 000, 13 000 realizations, respectively. The lattice size was
65 × 65 × 66 in all cases.

(v) The results shown in the figures are for the largest sizes simulated. Simulation for smaller
sizes, e.g., 199 × 200 in two dimensions and 41 × 41 × 42 in three dimensions show that
there is no detectable finite-size effect.

(vi) There could be some error in the estimate of θ due to the error in the estimation of Tc.
We have, however, checked that θ does not vary measurably when Tc is varied about its
estimated value within the error bar.

Lastly, we should mention that one can also estimate θ from the behaviour of the
autocorrelation function

A(t, 0) = 〈Si(t)Si(0)〉 − 〈Si(t)〉〈Si(0)〉 ∼ t−λ (7)

where λ = d/z − θ . In this method, one can put ms(0) = 0. One needs to know z very
accurately to get an accurate estimate of θ using this method. Also, a good estimate of θ

requires lattice sizes much greater than the ones simulated in the present study. Nevertheless,
we could calculate A(t, 0) and verify that λ (and hence θ ) is indeed independent of m0.
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